API
IntervalArithmetic.IntervalArithmetic
— ModuleIntervalArithmetic
Library for validated numerics using interval arithmetic.
Learn more: https://github.com/JuliaIntervals/IntervalArithmetic.jl
IntervalArithmetic.BareInterval
— TypeBareInterval{T<:NumTypes}
Interval type for guaranteed computation with interval arithmetic according to the IEEE Standard 1788-2015. Unlike Interval
, this bare interval does not have decorations, is not a subtype of Real
and errors on operations mixing BareInterval
and Number
.
Fields:
lo :: T
hi :: T
Constructor compliant with the IEEE Standard 1788-2015: bareinterval
.
See also: Interval
.
IntervalArithmetic.ExactReal
— TypeExactReal{T<:Real} <: Real
Real numbers with the assurance that they precisely correspond to the number described by their binary form. The purpose is to guarantee that a non interval number is exact, so that ExactReal
can be used with Interval
without producing the "NG" flag.
By using ExactReal
, users acknowledge the responsibility of ensuring that the number they input corresponds to their intended value. For example, ExactReal(0.1)
implies that the user knows that $0.1$ can not be represented exactly as a binary number, and that they are using a slightly different number than $0.1$. To help identify the binary number, ExactReal
is displayed without any rounding.
julia> ExactReal(0.1)
ExactReal{Float64}(0.1000000000000000055511151231257827021181583404541015625)
In case of doubt, has_exact_display
can be use to check if the string representation of a Real
is equal to its binary value.
Examples
julia> setdisplay(:full);
julia> 0.5 * interval(1)
Interval{Float64}(0.5, 0.5, com)_NG
julia> ExactReal(0.5) * interval(1)
Interval{Float64}(0.5, 0.5, com)
julia> [1, interval(2)]
2-element Vector{Interval{Float64}}:
Interval{Float64}(1.0, 1.0, com)_NG
Interval{Float64}(2.0, 2.0, com)
julia> [ExactReal(1), interval(2)]
2-element Vector{Interval{Float64}}:
Interval{Float64}(1.0, 1.0, com)
Interval{Float64}(2.0, 2.0, com)
See also: @exact
.
IntervalArithmetic.Interval
— TypeInterval{T<:NumTypes} <: Real
Interval type for guaranteed computation with interval arithmetic according to the IEEE Standard 1788-2015. This structure combines a BareInterval
together with a Decoration
.
Fields:
bareinterval :: BareInterval{T}
decoration :: Decoration
isguaranteed :: Bool
Constructors compliant with the IEEE Standard 1788-2015:
IntervalArithmetic.bareinterval
— Methodbareinterval(T, a, b)
Create the bare interval $[a, b]$ according to the IEEE Standard 1788-2015. The validity of the interval is checked by is_valid_interval
: if true
then a BareInterval{T}
is constructed, otherwise an empty interval is returned.
Nothing is done to compensate for the fact that floating point literals are rounded to the nearest when parsed (e.g. 0.1
). In such cases, parse the string containing the desired value to ensure its tight enclosure.
See also: interval
, ±
, ..
and @I_str
.
Examples
julia> setdisplay(:full);
julia> bareinterval(1//1, π)
BareInterval{Rational{Int64}}(1//1, 85563208//27235615)
julia> bareinterval(Rational{Int32}, 1//1, π)
BareInterval{Rational{Int32}}(1//1, 85563208//27235615)
julia> bareinterval(1, π)
BareInterval{Float64}(1.0, 3.1415926535897936)
julia> bareinterval(BigFloat, 1, π)
BareInterval{BigFloat}(1.0, 3.141592653589793238462643383279502884197169399375105820974944592307816406286233)
IntervalArithmetic.bisect
— Methodbisect(x, α=0.5)
bisect(x, i, α=0.5)
Split an interval x
at a relative position α
, where α = 0.5
corresponds to the midpoint.
Split the i
-th component of a vector x
at a relative position α
, where α = 0.5
corresponds to the midpoint.
IntervalArithmetic.bounds
— Methodbounds(x)
Bounds of x
given as a tuple. Unlike inf
, this function does not normalize the infimum of the interval.
IntervalArithmetic.cancelminus
— Methodcancelminus(x, y)
Compute the unique interval z
such that y + z == x
.
The result is decorated by at most trv
(Section 11.7.1).
Implement the cancelMinus
function of the IEEE Standard 1788-2015 (Section 9.2).
IntervalArithmetic.cancelplus
— Methodcancelplus(x, y)
Compute the unique interval z
such that y - z == x
; this is semantically equivalent to cancelminus(x, -y)
.
The result is decorated by at most trv
(Section 11.7.1).
Implement the cancelPlus
function of the IEEE Standard 1788-2015 (Section 9.2).
IntervalArithmetic.diam
— Methoddiam(x)
Diameter of x
. If x
is complex, then the diameter is the maximum diameter between its real and imaginary parts.
Implement the wid
function of the IEEE Standard 1788-2015 (Table 9.2).
IntervalArithmetic.dist
— Methoddist(x, y)
Distance between x
and y
.
IntervalArithmetic.emptyinterval
— Methodemptyinterval(T=default_numtype())
Create an empty interval. This interval is an exception to the fact that the lower bound is larger than the upper one.
Implement the empty
function of the IEEE Standard 1788-2015 (Section 10.5.2).
IntervalArithmetic.entireinterval
— Methodentireinterval(T=default_numtype())
Create an interval representing the entire real line, or the entire complex plane if T
is complex.
Depending on the flavor, infinity may or may not be considered part of the interval.
Implement the entire
function of the IEEE Standard 1788-2015 (Section 10.5.2).
IntervalArithmetic.extended_div
— Methodextended_div(x, y)
Two-output division.
Implement the mulRevToPair
function of the IEEE Standard 1788-2015 (Section 10.5.5).
IntervalArithmetic.fastpow
— Methodfastpow(x, y)
A faster implementation of pow(x, y)
, at the cost of maybe returning a larger interval.
IntervalArithmetic.fastpown
— Methodfastpown(x, n)
A faster implementation of pown(x, n)
, at the cost of maybe returning a larger interval.
IntervalArithmetic.has_exact_display
— Methodhas_exact_display(x::Real)
Determine if the display of x
up to 2000 decimals is equal to the bitwise value of x
. This is famously not true for the float displayed as 0.1
.
IntervalArithmetic.hull
— Methodhull(x, y)
Return the interval hull of the intervals x
and y
, considered as (extended) sets of real numbers, i.e. the smallest interval that contains all of x
and y
.
The result is decorated by at most trv
(Section 11.7.1).
Implement the convexHull
function of the IEEE Standard 1788-2015 (Section 9.3).
IntervalArithmetic.in_interval
— Methodin_interval(x, y)
Test whether x
is an element of y
.
Implement the isMember
function of the IEEE Standard 1788-2015 (Section 10.6.3).
IntervalArithmetic.inf
— Methodinf(x)
Lower bound, or infimum, of x
. For a zero AbstractFloat
lower bound, a negative zero is returned.
Implement the inf
function of the IEEE Standard 1788-2015 (Table 9.2).
IntervalArithmetic.interiordiff
— Methodinteriordiff(x, y)
Remove the interior of y
from x
. If x
and y
are vectors, then they are treated as multi-dimensional intervals.
IntervalArithmetic.intersect_interval
— Methodintersect_interval(x, y)
Returns the intersection of the intervals x
and y
, considered as (extended) sets of real numbers. That is, the set that contains the points common in x
and y
.
The result is decorated by at most trv
(Section 11.7.1).
Implement the intersection
function of the IEEE Standard 1788-2015 (Section 9.3).
IntervalArithmetic.interval
— Methodinterval(T, a, b, d = com)
Create the interval $[a, b]$ according to the IEEE Standard 1788-2015. The validity of the interval is checked by is_valid_interval
: if true
then an Interval{T}
is constructed, otherwise an NaI (Not an Interval) is returned.
Nothing is done to compensate for the fact that floating point literals are rounded to the nearest when parsed (e.g. 0.1
). In such cases, parse the string containing the desired value to ensure its tight enclosure.
Examples
julia> setdisplay(:full);
julia> interval(1//1, π)
Interval{Rational{Int64}}(1//1, 85563208//27235615, com)
julia> interval(Rational{Int32}, 1//1, π)
Interval{Rational{Int32}}(1//1, 85563208//27235615, com)
julia> interval(1, π)
Interval{Float64}(1.0, 3.1415926535897936, com)
julia> interval(BigFloat, 1, π)
Interval{BigFloat}(1.0, 3.141592653589793238462643383279502884197169399375105820974944592307816406286233, com)
IntervalArithmetic.isatomic
— Methodisatomic(x)
Test whether x
is unable to be split. This occurs if the interval is empty, or if its lower and upper bounds are equal, or if the bounds are consecutive floating-point numbers.
IntervalArithmetic.isbounded
— Methodisbounded(x)
Test whether x
is empty or has finite bounds.
IntervalArithmetic.iscommon
— Methodiscommon(x)
Test whether x
is not empty and bounded.
This is does not take into consideration the decoration of the interval.
IntervalArithmetic.isdisjoint_interval
— Methodisdisjoint_interval(x, y)
Test whether x
and y
have no common elements.
Implement the disjoint
function of the IEEE Standard 1788-2015 (Table 9.3).
IntervalArithmetic.isempty_interval
— Methodisempty_interval(x)
Test whether x
contains no elements.
Implement the isEmpty
function of the IEEE Standard 1788-2015 (Section 10.6.3).
IntervalArithmetic.isentire_interval
— Methodisentire_interval(x)
Test whether x
is the entire real line.
Implement the isEntire
function of the IEEE Standard 1788-2015 (Section 10.6.3).
IntervalArithmetic.isequal_interval
— Methodisequal_interval(x, y)
Test whether x
and y
are identical.
Implement the equal
function of the IEEE Standard 1788-2015 (Table 9.3).
IntervalArithmetic.isguaranteed
— Methodisguaranteed(x::BareInterval)
isguaranteed(x::Interval)
isguaranteed(x::Complex{<:Interval})
Test whether the interval is not guaranteed to encompass all possible numerical errors. This happens whenever an Interval
is constructed using convert(::Type{<:Interval}, ::Real)
, which may occur implicitly when mixing intervals and Real
types.
Since conversion between BareInterval
and Number
is prohibited, this implies that isguaranteed(::BareInterval) == true
.
In the case of a complex interval x
, this is semantically equivalent to isguaranteed(real(x)) & isguaranteed(imag(x))
.
Examples
julia> isguaranteed(bareinterval(1))
true
julia> isguaranteed(interval(1))
true
julia> isguaranteed(convert(Interval{Float64}, 1))
false
julia> isguaranteed(interval(1) + 0)
false
IntervalArithmetic.isinterior
— Methodisinterior(x, y)
Test whether x
is in the interior of y
. If x
and y
are intervals, this is semantically equivalent to isstrictsubset(x, y)
.
Implement the interior
function of the IEEE Standard 1788-2015 (Table 9.3).
See also: isstrictsubset
.
IntervalArithmetic.isnai
— Methodisnai(x)
Test whether x
is an NaI (Not an Interval).
IntervalArithmetic.isstrictless
— Methodisstrictless(x, y)
Test whether inf(x) < inf(y)
and sup(x) < sup(y)
, where <
is replaced by ≤
for infinite values.
Implement the strictLess
function of the IEEE Standard 1788-2015 (Table 10.3).
IntervalArithmetic.isstrictsubset
— Methodisstrictsubset(x, y)
Test whether x
is a strict subset of y
. If x
and y
are intervals, this is semantically equivalent to isinterior(x, y)
. If x
and y
are vectors, x
must be a subset of y
with at least one of their component being a strict subset.
See also: isinterior
.
IntervalArithmetic.issubset_interval
— Methodissubset_interval(x, y)
Test whether x
is contained in y
.
Implement the subset
function of the IEEE Standard 1788-2015 (Table 9.3).
IntervalArithmetic.isthin
— Methodisthin(x, y)
Test whether x
contains only y
.
IntervalArithmetic.isthin
— Methodisthin(x)
Test whether x
contains only a real.
Implement the isSingleton
function of the IEEE Standard 1788-2015 (Table 9.3).
IntervalArithmetic.isthininteger
— Methodisthininteger(x)
Test whether x
contains only an integer.
IntervalArithmetic.isthinone
— Methodisthinone(x)
Test whether x
contains only one.
IntervalArithmetic.isthinzero
— Methodisthinzero(x)
Test whether x
contains only zero.
IntervalArithmetic.isunbounded
— Methodisunbounded(x)
Test whether x
is not empty and has infinite bounds.
IntervalArithmetic.isweakless
— Methodisweakless(x, y)
Test whether inf(x) ≤ inf(y)
and sup(x) ≤ sup(y)
, where <
is replaced by ≤
for infinite values.
Implement the less
function of the IEEE Standard 1788-2015 (Table 10.3).
IntervalArithmetic.mag
— Methodmag(x)
Magnitude of x
.
Implement the mag
function of the IEEE Standard 1788-2015 (Table 9.2).
See also: mig
.
IntervalArithmetic.mid
— Methodmid(x, α = 0.5)
Relative midpoint of x
, for α
between 0 and 1 such that mid(x, 0)
is the lower bound of the interval, mid(x, 1)
its upper bound, and mid(x, 0.5)
its midpoint.
Implement the mid
function of the IEEE Standard 1788-2015 (Table 9.2).
IntervalArithmetic.midradius
— Methodmidradius(x)
Midpoint and radius of x
.
Function required by the IEEE Standard 1788-2015 in Section 10.5.9 for the set-based flavor.
IntervalArithmetic.mig
— Methodmig(x)
Mignitude of x
.
Implement the mig
function of the IEEE Standard 1788-2015 (Table 9.2).
See also: mag
.
IntervalArithmetic.mince!
— Methodmince!(v, x, n)
In-place version of mince
.
IntervalArithmetic.mince
— Methodmince(x, n)
Split an interval x
in n
intervals of the same diameter.
Split the i
-th component of a vector x
in n[i]
intervals of the same diameter; n
can be a tuple of integers, or a single integer in which case the same n
is used for all the components of x
.
IntervalArithmetic.nai
— Methodnai(T=default_numtype())
Create an NaI (Not an Interval).
IntervalArithmetic.overlap
— Methodoverlap(x::BareInterval, y::BareInterval)
overlap(x::Interval, y::Interval)
Implement the overlap
function of the IEEE Standard 1788-2015 (Table 10.7).
IntervalArithmetic.pow
— Methodpow(x, y)
Compute the power of the positive real part of x
by y
. In particular, even if y
is a thin integer, this is not equivalent to pown(x, sup(y))
.
Implement the pow
function of the IEEE Standard 1788-2015 (Table 9.1).
See also: fastpow
, pown
and fastpown
.
Examples
julia> setdisplay(:full);
julia> pow(bareinterval(2, 3), bareinterval(2))
BareInterval{Float64}(4.0, 9.0)
julia> pow(interval(-1, 1), interval(3))
Interval{Float64}(0.0, 1.0, trv)
julia> pow(interval(-1, 1), interval(-3))
Interval{Float64}(1.0, Inf, trv)
IntervalArithmetic.pown
— Methodpown(x, n)
Implement the pown
function of the IEEE Standard 1788-2015 (Table 9.1).
See also: fastpown
, pow
and fastpow
.
Examples
julia> setdisplay(:full);
julia> pown(bareinterval(2, 3), 2)
BareInterval{Float64}(4.0, 9.0)
julia> pown(interval(-1, 1), 3)
Interval{Float64}(-1.0, 1.0, com)
julia> pown(interval(-1, 1), -3)
Interval{Float64}(-Inf, Inf, trv)
IntervalArithmetic.precedes
— Methodprecedes(x, y)
Test whether any element of x
is lesser or equal to every elements of y
.
Implement the precedes
function of the IEEE Standard 1788-2015 (Table 10.3).
IntervalArithmetic.radius
— Methodradius(x)
Radius of x
, such that issubset_interval(x, mid(x) ± radius(x))
. If x
is complex, then the radius is the maximum radius between its real and imaginary parts.
Implement the rad
function of the IEEE Standard 1788-2015 (Table 9.2).
IntervalArithmetic.rootn
— Methodrootn(x::BareInterval, n::Integer)
Compute the real n
-th root of x
.
Implement the rootn
function of the IEEE Standard 1788-2015 (Table 9.1).
IntervalArithmetic.setdisplay
— Functionsetdisplay(format::Symbol; decorations::Bool, ng_flag::Bool, sigdigits::Int)
Change the format used by show
to display intervals.
Possible options:
format
can be::infsup
: display intervals as[a, b]
.:midpoint
: display intervals asm ± r
.:full
: display interval bounds entirely, ignoringsigdigits
.
decorations
: display the decorations or not.ng_flag
: display the NG flag or not.sigdigits
: number (greater or equal to 1) of significant digits to display.
Initially, the display options are set to setdisplay(:infsup; decorations = true, ng_flag = true, sigdigits = 6)
. If any of format
, decorations
, ng_flag
and sigdigits
is omitted, then their value is left unchanged.
Examples
julia> setdisplay(:infsup; decorations = true, sigdigits = 6) # default display options
Display options:
- format: infsup
- decorations: true
- NG flag: true
- significant digits: 6
julia> x = interval(0.1, 0.3)
[0.0999999, 0.300001]_com
julia> setdisplay(:full)
Display options:
- format: full
- decorations: true
- NG flag: true
- significant digits: 6 (ignored)
julia> x
Interval{Float64}(0.1, 0.3, com)
julia> setdisplay(:infsup; sigdigits = 3)
Display options:
- format: infsup
- decorations: true
- NG flag: true
- significant digits: 3
julia> x
[0.0999, 0.301]_com
julia> setdisplay(; decorations = false)
Display options:
- format: infsup
- decorations: false
- NG flag: true
- significant digits: 3
julia> x
[0.0999, 0.301]
IntervalArithmetic.strictprecedes
— Methodstrictprecedes(x, y)
Test whether any element of x
is strictly lesser than every elements of y
.
Implement the strictPrecedes
function of the IEEE Standard 1788-2015 (Table 10.3).
IntervalArithmetic.sup
— Methodsup(x)
Upper bound, or supremum, of x
.
Implement the sup
function of the IEEE Standard 1788-2015 (Table 9.2).
IntervalArithmetic.@I_str
— MacroI"str"
Create an interval by parsing the string "str"
; this is semantically equivalent to parse(Interval{default_numtype()}, "str")
.
Examples
julia> setdisplay(:full);
julia> I"[3, 4]"
Interval{Float64}(3.0, 4.0, com)
julia> I"0.1"
Interval{Float64}(0.09999999999999999, 0.1, com)
julia> in_interval(1//10, I"0.1")
true
IntervalArithmetic.@exact
— Macro@exact
Wrap every literal numbers of the expression in an ExactReal
. This macro allows defining generic functions, seamlessly accepting both Number
and Interval
arguments, without producing the "NG" flag.
By using ExactReal
, users acknowledge the responsibility of ensuring that the number they input corresponds to their intended value. For example, ExactReal(0.1)
implies that the user knows that $0.1$ can not be represented exactly as a binary number, and that they are using a slightly different number than $0.1$. To help identify the binary number, ExactReal
is displayed without any rounding.
julia> ExactReal(0.1)
ExactReal{Float64}(0.1000000000000000055511151231257827021181583404541015625)
In case of doubt, has_exact_display
can be use to check if the string representation of a Real
is equal to its binary value.
Examples
julia> setdisplay(:full);
julia> f(x) = 1.2*x + 0.1
f (generic function with 1 method)
julia> f(interval(1, 2))
Interval{Float64}(1.2999999999999998, 2.5, com)_NG
julia> @exact g(x) = 1.2*x + 0.1
g (generic function with 1 method)
julia> g(interval(1, 2))
Interval{Float64}(1.2999999999999998, 2.5, com)
julia> g(1.4)
1.78
See also: ExactReal
.
IntervalArithmetic.@interval
— Macro@interval(expr)
@interval(T, expr)
@interval(T, expr1, expr2)
Walk through an expression and wrap each argument of functions with the internal constructor atomic
.
Examples
julia> setdisplay(:full);
julia> @macroexpand @interval sin(1) # Float64 is the default bound type
:(sin(IntervalArithmetic.atomic(Float64, 1)))
julia> @macroexpand @interval Float32 sin(1)
:(sin(IntervalArithmetic.atomic(Float32, 1)))
julia> @interval Float64 sin(1) exp(1)
Interval{Float64}(0.8414709848078965, 2.7182818284590455, com)